“AI(人工智能)技術應用于藥物研發(fā)已經(jīng)引起研究院所和制藥行業(yè)高度重視,AI開始賦能藥物研發(fā)的靶標發(fā)現(xiàn)和確證、藥物先導化合物的發(fā)現(xiàn)和優(yōu)化、藥物藥代和毒性評價等各個階段,將成為未來藥物研發(fā)的關鍵核心技術之一。”7月12日,中國科學院院士、中國科學院上海藥物研究所研究員蔣華良在2022《理解未來》科學講座第二期“AI+分子模擬與藥物研發(fā)”作主題演講時說。
講座中,蔣華良介紹了國際創(chuàng)新藥研發(fā)的進展與趨勢。他認為,小分子藥物方面有一些關鍵問題亟待AI參與解決。例如,結(jié)合自由能的計算速度已較以往提升了3—5倍,而只有當速度提升到上萬倍,結(jié)合自由能預測精確度與小分子藥物設計效率才有望實現(xiàn)本質(zhì)突破。
在蔣華良看來,制藥領域的高投入、長周期等痛點難以在短時間內(nèi)有所改善,但AI在預測臨床候選藥物成功率方面將大有可為?!霸谂R床試驗當中,大概10種候選藥中只有1種會試驗成功,而我們積累了上萬個藥物的臨床數(shù)據(jù),里面包含以往大量臨床試驗失敗藥物的通用數(shù)據(jù),通過建模、計算,可以預測排除掉臨床候選藥物中的失敗藥物,更好地鎖定可能會成功的藥物?!笔Y華良說。
北京大學化學與分子工程學院教授、北京大學理學部副主任高毅勤在講座中結(jié)合分子模擬談到,傳統(tǒng)的分子模擬在應用于復雜的化學和生物等分子體系時受到嚴重的時空尺度限制,以深度學習為代表的AI技術可以在理論和計算、理論和實驗、計算和實驗之間建立有機聯(lián)系,成為當前突破傳統(tǒng)分子模擬瓶頸并為分子模擬和分子科學賦能的重要工具。
據(jù)介紹,高毅勤團隊基于物理模型、科學實驗數(shù)據(jù)和人工智能算法,發(fā)展了多個結(jié)合深度學習的分子模擬方法,在全球蛋白質(zhì)結(jié)構(gòu)預測競賽(CAMEO)中取得優(yōu)異成績。
不過,AI應用于藥物研發(fā)目前還處于初始階段。蔣華良表示,需要發(fā)展藥物研發(fā)專用的AI新技術,并與傳統(tǒng)的藥物分子設計和實驗技術緊密結(jié)合,才能真正賦能藥物研發(fā)。
以小分子藥物設計為例,高毅勤提到,數(shù)據(jù)是制約小分子藥物設計的最大瓶頸,“目前能夠真正獲得的可靠數(shù)據(jù)非常少,數(shù)據(jù)方面還存在指標不統(tǒng)一、敏感數(shù)據(jù)難以獲取等問題”。
此次講座主持人、未來論壇理事、北京大學李兆基講席教授謝曉亮也表示,目前已有企業(yè)以自由能計算代替大規(guī)模小分子藥物篩選,實驗中也有以微流控篩選技術增加通量,從而大幅降低費用。然而,由于小分子數(shù)據(jù)量不足、數(shù)據(jù)庫不夠大,還不能實現(xiàn)小分子藥物的機器學習預測,這是小分子藥物設計所面臨的巨大挑戰(zhàn)。
高毅勤認為,通過整合單細胞組學信息,建立可靠的細胞響應模型,可以讓AI對藥物研發(fā)下游作出一些預判工作?!叭绻孔銐蚋撸梢岳迷摷毎P?,對大分子藥物設計及小分子藥物設計當中的小分子入膜、蛋白信號傳導、蛋白質(zhì)的入核轉(zhuǎn)運等進行預判,隨著AI不斷自我學習和優(yōu)化,預判的精確度也會逐漸提升,若將其打造成公用性的開放平臺,將使整個醫(yī)藥研發(fā)受益。”
免責聲明:本網(wǎng)轉(zhuǎn)載自其它媒體的文章,目的在于弘揚科技創(chuàng)新精神,傳遞更多科技創(chuàng)新信息,宣傳國家科技政策,展示國家科技形象,增強國家科技軟實力,參與國際科技輿論競爭,提高國際科技話語權,并不代表本網(wǎng)贊同其觀點和對其真實性負責,在此我們謹向原作者和原媒體致以崇高敬意。如果您認為本網(wǎng)文章及圖片侵犯了您的版權,請與我們聯(lián)系,我們將第一時間刪除。